Electromagnetic microcontinua and Maxwell’s equations in matter

Maurizio Romeo
Department of Mathematics, University of Genoa, Italy

The common microcontinuum theories of electromagnetic elastic media rely on the extension of the mechanical micromorphic model to electromagnetic coupling [1,2]. Maxwell’s equations are added to mechanical balance laws and classical constitutive equations for polarization and magnetization are generalized to account for micro-deformations. The resulting model requires complex constitutive assumptions involving electric and magnetic fields beside microscopic strain measures.

An alternative approach can be proposed on the basis of the following physical reasons.

A consistent electromagneto-elastic microcontinuum model should put mass and bound charge microdensities on the same ground in dealing with coupling effects. Moreover, at least for certain spatial scales, micro-deformation implies a corresponding variation of spatial distribution of bound charges so that electric and magnetic multipoles can be described by the same micro-displacements connected to mechanical deformations. According to classical electromagnetic theories, these multipoles play an essential role in the derivation of Maxwell’s equations in matter, yielding a proper definition of polarization and magnetization (see for example [3,4] and references therein).

A continuum micromorphic model for electro-elastic media, based on electric multipole densities, discussed in some previous works (see for example [5,6]) is here extended to deal with electric conductors. In this model polarization \(P \) and magnetization \(M \) are obtained from the derivation of macroscopic Maxwell’s equations in terms of multipoles which, in turn, satisfy suitable evolution equations [7,8]. Only bound charges contribute to \(P \) and \(M \), and a convective term arises in electric current owing to microdeformation. Charge carriers are here considered as a continuum superimposed to the microstructured conductor and the case of a rigid polarized conductor is discussed. One dimensional plane waves are also analyzed to show the effect of conductivity and polarization on the dispersion equation.

References